Generalized Bisimulation Metrics
نویسندگان
چکیده
The bisimilarity pseudometric based on the Kantorovich lifting is one of the most popular metrics for probabilistic processes proposed in the literature. However, its application in verification is limited to linear properties. We propose a generalization of this metric which allows to deal with a wider class of properties, such as those used in security and privacy. More precisely, we propose a family of metrics, parametrized on a notion of distance which depends on the property we want to verify. Furthermore, we show that the members of this family still characterize bisimilarity in terms of their kernel, and provide a bound on the corresponding metrics on traces. Finally, we study the case of a metric corresponding to differential privacy. We show that in this case it is possible to have a dual form, easier to compute, and we prove that the typical constructs of process algebra are non-expansive with respect to this metrics, thus paving the way to a modular approach to verification.
منابع مشابه
Up-To Techniques for Generalized Bisimulation Metrics
Bisimulation metrics allow us to compute distances between the behaviors of probabilistic systems. In this paper we present enhancements of the proof method based on bisimulation metrics, by extending the theory of up-to techniques to (pre)metrics on discrete probabilistic concurrent processes. Up-to techniques have proved to be a powerful proof method for showing that two systems are bisimilar...
متن کاملGeneralized Douglas-Weyl Finsler Metrics
In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.
متن کاملOn Special Generalized Douglas-Weyl Metrics
In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.
متن کاملLogical Characterization of Bisimulation Metrics
Bisimulation metrics provide a robust and accurate approach to study the behavior of nondeterministic probabilistic processes. In this paper, we propose a logical characterization of bisimulation metrics based on a simple probabilistic variant of the Hennessy-Milner logic. Our approach is based on the novel notions of mimicking formulae and distance between formulae. The former are a weak versi...
متن کاملBisimulation Metrics are Optimal Value Functions
Bisimulation is a notion of behavioural equivalence on the states of a transition system. Its definition has been extended to Markov decision processes, where it can be used to aggregate states. A bisimulation metric is a quantitative analog of bisimulation that measures how similar states are from a the perspective of long-term behavior. Bisimulation metrics have been used to establish approxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014